منابع مشابه
Class Groups of Dihedral Extensions
Let L/F be a dihedral extension of degree 2p, where p is an odd prime. Let K/F and k/F be subextensions of L/F with degrees p and 2, respectively. Then we will study relations between the p-ranks of the class groups Cl(K) and Cl(k). 1. A Short History of Reflection Theorems Results comparing the p-rank of class groups of different number fields (often based on the interplay between Kummer theor...
متن کاملDihedral and cyclic extensions with large class numbers
This paper is a continuation of [2]. We construct unconditionally several families of number fields with large class numbers. They are number fields whose Galois closures have as the Galois groups, dihedral groups Dn, n = 3, 4, 5, and cyclic groups Cn, n = 4, 5, 6. We first construct families of number fields with small regulators, and by using the strong Artin conjecture and applying some modi...
متن کاملCounting Dihedral and Quaternionic Extensions
We give asymptotic formulas for the number of biquadratic extensions of Q that admit a quadratic extension which is a Galois extension of Q with a prescribed Galois group, for example, with a Galois group isomorphic to the quaternionic group. Our approach is based on a combination of the theory of quadratic equations with some analytic tools such as the Siegel–Walfisz theorem and the double osc...
متن کاملEE8-lattices and dihedral groups
We classify integral rootless lattices which are sums of pairs of EE8-lattices (lattices isometric to √ 2 times the E8-lattice) and which define dihedral groups of orders less than or equal to 12. Most of these may be seen in the Leech lattice. Our classification may help understand Miyamoto involutions on lattice type vertex operator algebras and give a context for the dihedral groups which oc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2008
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2007.04.008